Telegram Group & Telegram Channel
AutoNumerics-Zero: Automated Discovery of State-of-the-Art Mathematical Functions [2023] - ещё одно AI-открытие уходящего года

Продолжаем тему оптимизации программ. Почти одновременно с FunSearch вышла другая работа от Deepmind, правда, не применяющая LLM, и поэтому попавшая только в Just Links. Идеологически она похожа на AutoML-Zero, про который я уже тоже писал пост.

Итак, мы умеем легко и быстро производить на компьютере 4 базовые арифметические операции. Однако, "трансцендентные" функции, например, экспоненту, нельзя легко посчитать. Компьютер их считает приближённо, например, с помощью ряда Тейлора. При этом, нам достаточно уметь приближать её на промежутке [0;1], т.к. в целую степень мы умеем легко возводить и таким образом получить любую степень.

Итак, задача - найти как можно более короткую / быструю программу, вычисляющую экспоненту на отрезке с заданной точностью. Авторы представляют программу в виде графа вычислений (см. картинку). Вершинами является вход x, выход f, константы и математические операции, в которые по направленным рёбрам попадают входные данные.

Генетический алгоритм поддерживает популяцию графов, случайно добавляет мутации в них - добавление вершин, удаление, замена ребра и т.д. Оптимизируется одновременно точность и скорость (кол-во операций или время исполнения). Так как у нас 2 важных критерия отбора, используется специальный алгоритм сортировки популяции, выбирающий программы, сбалансированные по-разному с точки зрения критериев.

В результате, алгоритм не оставляет камня на камне от бейзлайнов, созданных приматами. Количество операций сокращается примерно в 2 раза, но это не самое крутое. Алгоритм подбирает функции так, чтобы компилятор оптимизировал их наиболее выгодно, в итоге скорость возрастает в >3 раза.

И вновь кожанные мешки показывают свою несостоятельность в сложных многослойных задачах, которые нельзя разбить на изолированные кусочки. End-to-end алгоритмическая оптимизация не оставляет нам никаких шансов.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/143
Create:
Last Update:

AutoNumerics-Zero: Automated Discovery of State-of-the-Art Mathematical Functions [2023] - ещё одно AI-открытие уходящего года

Продолжаем тему оптимизации программ. Почти одновременно с FunSearch вышла другая работа от Deepmind, правда, не применяющая LLM, и поэтому попавшая только в Just Links. Идеологически она похожа на AutoML-Zero, про который я уже тоже писал пост.

Итак, мы умеем легко и быстро производить на компьютере 4 базовые арифметические операции. Однако, "трансцендентные" функции, например, экспоненту, нельзя легко посчитать. Компьютер их считает приближённо, например, с помощью ряда Тейлора. При этом, нам достаточно уметь приближать её на промежутке [0;1], т.к. в целую степень мы умеем легко возводить и таким образом получить любую степень.

Итак, задача - найти как можно более короткую / быструю программу, вычисляющую экспоненту на отрезке с заданной точностью. Авторы представляют программу в виде графа вычислений (см. картинку). Вершинами является вход x, выход f, константы и математические операции, в которые по направленным рёбрам попадают входные данные.

Генетический алгоритм поддерживает популяцию графов, случайно добавляет мутации в них - добавление вершин, удаление, замена ребра и т.д. Оптимизируется одновременно точность и скорость (кол-во операций или время исполнения). Так как у нас 2 важных критерия отбора, используется специальный алгоритм сортировки популяции, выбирающий программы, сбалансированные по-разному с точки зрения критериев.

В результате, алгоритм не оставляет камня на камне от бейзлайнов, созданных приматами. Количество операций сокращается примерно в 2 раза, но это не самое крутое. Алгоритм подбирает функции так, чтобы компилятор оптимизировал их наиболее выгодно, в итоге скорость возрастает в >3 раза.

И вновь кожанные мешки показывают свою несостоятельность в сложных многослойных задачах, которые нельзя разбить на изолированные кусочки. End-to-end алгоритмическая оптимизация не оставляет нам никаких шансов.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/143

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

Telegram Auto-Delete Messages in Any Chat

Some messages aren’t supposed to last forever. There are some Telegram groups and conversations where it’s best if messages are automatically deleted in a day or a week. Here’s how to auto-delete messages in any Telegram chat. You can enable the auto-delete feature on a per-chat basis. It works for both one-on-one conversations and group chats. Previously, you needed to use the Secret Chat feature to automatically delete messages after a set time. At the time of writing, you can choose to automatically delete messages after a day or a week. Telegram starts the timer once they are sent, not after they are read. This won’t affect the messages that were sent before enabling the feature.

NEWS: Telegram supports Facetime video calls NOW!

Secure video calling is in high demand. As an alternative to Zoom, many people are using end-to-end encrypted apps such as WhatsApp, FaceTime or Signal to speak to friends and family face-to-face since coronavirus lockdowns started to take place across the world. There’s another option—secure communications app Telegram just added video calling to its feature set, available on both iOS and Android. The new feature is also super secure—like Signal and WhatsApp and unlike Zoom (yet), video calls will be end-to-end encrypted.

Knowledge Accumulator from jp


Telegram Knowledge Accumulator
FROM USA